МИФЫ НАШЕГО ВРЕМЕНИ: ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННЫЕ ОРГАНИЗМЫ. Ч.1
Так ли страшен черт?
Биотехнологии
Человеку давно свойственно интересоваться окружающим миром и находить объяснения тому окружающим вещам и событиям. Собственно, без этого человек не стал бы человеком.
На базе верований, мифов развивалась сначала религия, а потом — и современная наука, которая уже весьма успешно объясняет окружающий мир от очень малых до впечатляющих масштабов. Но всегда оставались люди, которые противились прогрессу и распространяли устоявшиеся мифы, уверяя, что они отвечают на все вопросы и незачем двигаться дальше. Гром гремит — это Перун-громовержец злится; кто-то заболел — это Бог его наказывает, вот тебе объяснения, отстань, не задавай вопросов, а лучше помолись.
Современные мифы более глубоки и обычно связаны с наукой. Причины понятна — наука развилась (особенно в последнее время) до такой степени, что часто нужен колоссальный объем знаний, чтобы просто понять, о чем вообще идет речь. У многих людей этого объема нет или безвозвратно потерян, что и снижает их сопротивляемость к разного рода мифам нашего времени. Миф про вредность пищевых добавок Exxx; миф про полезность натурального и вредность «химии»; миф про врачей-убийц, травящих людей прививками; миф про настолько страшное ГМО, что наклейки с надписью «без ГМО» надо клеить даже на салфетки и на пачки с солью.
Что такое ГМО? Зачем они нужны? Как велика опасность и польза от их использования? Есть ли доказательства безопасности этих организмов?
Disclaimer: автор статьи не имеет отношения к биологии — не является ни биологом, ни биохимиком, ни генетиком и не обладает хоть сколько-то родственной профессией. Эта статья — всего лишь попытка разобраться с ворохом информации и реальности об одной из угроз современного мира. Так что если вы ближе к биологии и генетике, заранее предупреждаю, вы можете пострадать при чтении статьи, например, лопнуть от смеха. Фактически данная статья является компиляцией статей по теме ГМО (ссылки приведены в тексте).
Что такое ген и генотип
С самого начала определимся, о чем пойдет речь. Для начала — что такое ген? Как известно, носителем наследственной информации (генома) является ДНК — длиннющая молекула, выглядящая как двойная спираль, которая содержится в каждой клетке организма и хранит полную информацию об организме. В редких случаях (у вирусов) носителем наследственной информации является РНК.ДНК — колоссальная по размерам молекула, если ее спираль просто развернуть, эта линия будет длиной в несколько сантиметров. ДНК содержит последовательность генов (геном), которые вместе с условиями окружающей среды (условиями роста) и определяет фенотип — внешний вид организма (да и внутренний тоже), его особенности, особенности внутренних процессов. Каждый ген кодирует производство какого-то белка или функциональной РНК, которые впоследствии и участвуют в биохимических процессах организма.
Различных белков огромное множество с различным назначением, например, в человеческом организме есть белок гемоглобин, который используется организмом для обеспечения внутренних органов кислородом, есть инсулин, который регулирует уровень глюкозы в крови, и множество других.
Инсулин. За его производство в организме отвечает один из генов 11-ой хромосомы.
Очевидно, что у разных людей разные ДНК, ведь люди не похожи друг на друга (и не у людей тоже — фактически каждый организм, за исключением разве что самых простейших, обладает своей собственной уникальной ДНК). ДНК постоянно меняется — под воздействием внешних факторов (радиации, ультрафиолета и прочего) в ДНК возникают мутации — изменения генов, «выключение/включение» генов и прочие трансформации. По теории эволюции, наиболее удачные мутации закрепляются, особи с неудачными мутациями отсеиваются. Мутации ДНК происходят чаще, чем принято думать. Человеческое тело ежесекундно пронзается сотнями высокоэнергетических космических частиц, естественно, многие из этих частиц попадают в ДНК и вызывают в нем изменения. Многие из этих изменений исправляются самим организмом (см. выше картинку с ДНК-лигазой, которая как раз и занимается репарацией ДНК), но некоторые оказываются устойчивыми и приводят к различным мутациям. Мутации могут быть вредными (например, в клетке «ломается» механизм внутреннего контроля размножения и получается раковая клетка), могут быть нейтральными и полезными — полезные закрепляются в процессе эволюции. Отметим, что по теории эволюции закрепляются положительные мутации, то есть те, которые позволяют виду выживать в текущих условиях. Человек же закрепляет то изменение растений (и животных), которое выгодно ему, а не окружающей среде — более сочные и крупные яблоки, более дойные коровы и так далее. Для этого существует селекция и генетическая модификация.Традиционная селекция
Поскольку ГМО сравнивается часто именно с традиционной селекцией (кстати, часто создается впечатление, что противники ГМО не знают о ее методах вообще ничего), надо обязательно упомянуть о методах традиционной селекции.
На самом деле традиционная селекция целью ставит то же самое — изменение генотипа определенного вида (в основном растений), чтобы достичь нужных человеку результатов. Селекция на растениях проста еще и тем, что растения очень склонны к изменению генотипа в зависимости от внешних условий — у них это один из методов защиты от животных и прочих вредителей, выработавшийся в процессе эволюции. Упомянем некоторые методы селекции:
Отбор. Самый древний и самый простой метод селекции. Сеем овощи/фрукты, собираем, оставляем только те, которые нам нужны (например, с самыми крупными плодами), опять сеем, опять растим и отбираем и так далее. Так выведена, например, антоновка. Он же очевидно и самый медленный метод селекции.
Полиплоидия. Дублирование хромосом в растении, что приводит к увеличению размеров клеток и всего растения.
В настоящее время применяют методы искусственного получения полиплоидов, воздействуя на растения разными мутагенами (в основном колхицином), разрушающими веретено деления клетки. Таким образом из диплоидных (2n) можно получить тетраплоидные (4n) формы.
Колхицин — токсичное вещество. Его планировали для борьбы против рака из-за высокой токсичности по отношению к раковым клеткам, но запретили, когда обнаружили, что и для обычных клеток оно тоже токсично.
Мутагенез. Спонтанное или индуцированное получение мутантов (изменение генокода). Опять уступим место цитатам:
http://sbio.info/page.php?id=40:
Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке.http://vodospad.kiev.ua/books/book18/dubinin_16.html
В настоящее время на базе громадного развития ядерной физики, давшей новые доступные источники излучений в виде гамма-лучей от Со60, нейтронов в ядерных реакторах и т. д., мощное влияние радиации используется в практических целях по селекции растений и микроорганизмов.Создание новых методов радиационной селекции было связано с развитием ряда научных положений в области генетики, и в первую очередь с разработкой вопроса о природе материальных основ наследственности, знание которых позволило вскрыть физическую и химическую природу воздействия радиации на наследственные структуры в клетке.
…
При введении в промышленное использование исходного штамма пеницилла (штамм 1951В25) его активность составляла всего лишь около 50 единиц. Продажная стоимость пенициллина в то время была громадной. За десять лет работы методами радиационной селекции, к 1960 г., были получены штаммы с активностью до 5000 единиц. При этом получены штаммы, не выделяющие золотисто-желтого пигмента, что резко облегчило химическую очистку пенициллина. В результате пенициллин стал дешевым, общедоступным лечебным средством. То же произошло со стрептомицином. Активность исходных штаммов составляла около 200 единиц, сейчас радиационные штаммы выделяют 2000 и более единиц.
Может, подобные методы селекции уже не применяются? Пожалуйста — современный метод селекции TILLING. Зародыши пшеницы обрабатываются сильным мутагенным и канцерогенным веществом Ethyl methanesulfonate, что приводит к мутациям около половины генов растения. После чего сканированием определяется растение, в котором изменен конкретный нужный нам ген, и путем постепенного скрещивания c нормальным видом добиваются получения более-менее вменяемого растения с нужным модифицированным геном. И, скорее всего, с кучей других модифицированных генов, которые никак не проявили себя на контроле.Таким образом, традиционная селекция широко использует такие методы: как облучение рентгеном, облучение радиацией, использование токсических веществ. Очевидно, что при этом меняется солидная часть генокода, причем никто не контролирует, что именно изменилось в коде и какие последствия эти изменения могут вызвать.
Генетическая модификация
Переходим к теме нашего повествования. Генетически модифицированные организмы по современной классификации — это организмы (бактерии, растения, животные), в генетический код которых искусственно внесены определенные изменения — например, дополнительные гены, изменение активности уже существующих генов и тому подобное.
Ключевое слово тут искусственное изменение. При этом используются разные методы генной инженерии, например, сейчас в основном используются специальные вирусы — ведь именно вирусы очень хорошо умеют внедряться в клетку и менять ее генный код на свой. Небольшая модификация вируса — и он уже меняет код не на свой, а на тот, который нужен нам.
Есть и другие методы модификации, отдельно отмечу только метод TALEN (Transcription activator-like effector nuclease), который позволяет создавать неидентифицируемые ГМО — то есть такие генетически модифицированные организмы, в которых факт модификации невозможно доказать никакими анализами (в более «старых» методах модификации существует возможность доказательства по определенным бордерным последовательностям. Это дорого и сложно, но возможно. Подробнее см. статью «Не пойман — не ГМО»).В общем, фактически единственное отличие традиционной селекции от генетической модификации в том, что в генной модификации мы знаем, что меняем, знаем, что хотим получить и целенаправленно. В традиционной — не знаем, просто смотрим, нужный получился или нет.
Аргументы за
Аргументы «за» легко найти у производителей генетически модифицированных организмов, а также просмотреть в базе данных генетических модификаций. Это и повышенная урожайность, и наличие определенных веществ (например «золотой рис» — рис с повышенным содержанием витамина A, подробнее чуть дальше), устойчивость к гербицидам, позволяющим изменять механизмы опрыскивания гербицидами посевов, выработка определенных токсинов против вредителей (например, картошка с устойчивостью к колорадскому жуку), что позволяет сократить использование тех же пестицидов, и так далее.
Страхи против ГМО обычно связаны именно с ГМО, употребляемыми в пищу. Но этим их область употребления не ограничивается. При помощи генной модификации, например, выведены: кошки, светящиеся в темноте, кошки, которые не вызывают аллергию, бактерии, вырабатывающие определенные лекарственные средства, и много других полезных вещей.ПРОДОЛЖЕНИЕ СЛЕДУЕТ...